
PyHDFE
Release 0.2.0

Jeff Gortmaker and Anya Tarascina

Aug 18, 2023

TABLE OF CONTENTS

I User Documentation 1

1 Introduction 3
1.1 Installation . 3
1.2 Bugs and Requests . 3

2 API Documentation 5
2.1 pyhdfe.create . 5
2.2 pyhdfe.Algorithm . 8
2.3 pyhdfe.Algorithm.residualize . 9

3 Tutorial 11
3.1 scikit-learn . 12
3.2 statsmodels . 15

4 References 19
4.1 Papers . 19
4.2 Software . 20

5 Legal 23

II Developer Documentation 25

6 Contributing 27

7 Testing 29
7.1 Testing Requirements . 29
7.2 Running Tests . 29
7.3 Test Organization . 29

8 Version Notes 31
8.1 0.2 . 31
8.2 0.1 . 31

III Indices 33

Index 35

i

ii

Part I

User Documentation

1

CHAPTER

ONE

INTRODUCTION

Note: This package is in beta. In future versions, the API may change substantially. Please use the GitHub issue
tracker to report bugs or to request features.

PyHDFE is a Python 3 implementation of algorithms for absorbing high dimensional fixed effects. This package was
created by Jeff Gortmaker in collaboration with Anya Tarascina.

What PyHDFE won’t do is provide a convenient interface for running regressions. Instead, the package is meant to
be incorporated into statistical projects that would benefit from performant fixed effect absorption. Another goal is
facilitating fair comparison of algorithms that have been previously implemented in various languages with different
convergence criteria.

Development of the package has been guided by code made publicly available by many researchers and practitioners.
For a full list of papers and software cited in this documentation, refer to the references section of the documentation.

1.1 Installation

The PyHDFE package has been tested on Python versions 3.6 through 3.9. The SciPy instructions for installing
related packages is a good guide for how to install a scientific Python environment. A good choice is the Anaconda
Distribution, since, along with many other packages that are useful for scientific computing, it comes packaged with
PyHDFE’s only required dependencies: NumPy and SciPy.

You can install the current release of PyHDFE with pip:

pip install pyhdfe

You can upgrade to a newer release with the --upgrade flag:

pip install --upgrade pyhdfe

If you lack permissions, you can install PyHDFE in your user directory with the --user flag:

pip install --user pyhdfe

Alternatively, you can download a wheel or source archive from PyPI. You can find the latest development code on
GitHub and the latest development documentation here.

1.2 Bugs and Requests

Please use the GitHub issue tracker to submit bugs or to request features.

3

https://github.com/jeffgortmaker/pyhdfe/issues
https://github.com/jeffgortmaker/pyhdfe/issues
https://jeffgortmaker.com
https://anyatarascina.com
https://pyhdfe.readthedocs.io/en/stable/references.html
https://www.python.org/downloads/
https://scipy.org/install/
https://www.anaconda.com/download
https://www.anaconda.com/download
https://numpy.org/
https://scipy.org/
https://pip.pypa.io/en/latest/
https://pypi.org/project/pyhdfe/
https://github.com/jeffgortmaker/pyhdfe/
https://pyhdfe.readthedocs.io/en/latest/
https://github.com/jeffgortmaker/pyhdfe/issues

PyHDFE, Release 0.2.0

4 Chapter 1. Introduction

CHAPTER

TWO

API DOCUMENTATION

Algorithms for absorbing fixed effects should be created with the following function.

create(ids[, cluster_ids, drop_singletons, . . .]) Initialize an algorithm for absorbing fixed effects.

2.1 pyhdfe.create

pyhdfe.create(ids, cluster_ids=None, drop_singletons=True, compute_degrees=True, de-
grees_method=None, residualize_method=None, options=None)

Initialize an algorithm for absorbing fixed effects.

By default, simple de-meaning is used for a single fixed effect, and non-accelerated de-meaning is used for more
than one dimension. This is the most conservative and simplest algorithm for fixed effect absorption. If it is
taking a long time, consider switching to a faster residualize_method and using different options.

When an algorithm is initialized, by default, singletons are dropped and degrees of freedom are computed.
If either behavior isn’t needed, or if degrees of freedom computation is taking a long time, consider us-
ing a more conservative degrees_method or disabling these behaviors with drop_singletons and
compute_degrees.

Warning: This function assumes that all of your data have already been cleaned. For example, it will not
drop observations with null values.

Parameters

• ids (array-like) – Two-dimensional array of fixed effect identifiers. Columns are fixed
effect dimensions and rows are observations. Identifiers can be integers, strings, or other
hashable data types. Columns after the first should have more than one unique value.

• cluster_ids (array-like, optional) – Two-dimensional array of cluster group identifiers,
which if specified will be used when computing degrees of freedom. If a fixed effect (i.e., a
column in ids) is nested within a cluster (i.e., a column of this matrix), it will not contribute
towards degrees of freedom used by the fixed effects. For more information, see Correia
(2015).

• drop_singletons (bool, optional) – Whether to drop singleton groups or observations
in ids when initializing the algorithm. Singletons groups are fixed effect groups with only
one observation. By default, singletons are dropped. When dropped, the number of single-
ton groups is equal to the number of rows in ids minus Algorithm.observations.
For more information about singletons and why they are typically dropped, see Correia
(2015).

5

PyHDFE, Release 0.2.0

• compute_degrees (bool, optional) – Whether to compute the number of degrees of
freedom used by the fixed effects. By default, degrees of freedom are computed.

• degrees_method (str, optional) – How to compute or approximate the number of de-
grees of freedom used by the fixed effects that aren’t nested within any cluster_ids.
The following methods are supported:

– 'none' (default for one dimension) - Assume there are no redundant fixed effects. This
method is exact for one dimension (i.e., for one column in ids). It provides the most
conservative upper bound for multiple dimensions but requires no additional computation.

For one dimension this method simply counts the number of fixed effect levels (i.e., the
number of distinct values in ids). Each dimension after the first contributes its number
of levels minus one.

– 'pairwise' (default for multiple dimensions) - Apply the algorithm of Abowd, Creecy,
and Kramarz (2002) to each pair of fixed effect dimensions. This method is exact for two
dimensions. It provides a smaller upper bound for more than two dimensions but can be
computationally expensive.

For one dimension this method is the same as 'none'. However, the second dimension
contributes its number of levels minus the number of connected components in the bipar-
tite graph formed by the two dimensions. Each dimension after the second contributes its
number of levels minus the maximum number of connected components in the bipartite
graphs that it forms with prior dimensions. This is the method used by reghdfe.

– 'exact' - Apply numpy.linalg.matrix_rank() to dummy variables con-
structed from ids. This method is exact for any number of dimensions but is typically
computationally infeasible. It is meant to be a benchmark.

• residualize_method (str, optional) – Type of algorithm to initialize. The following
methods are supported:

– 'within' (default for one dimension) - Within transform. Matrix columns are de-
meaned within each fixed effect group (i.e., each unique value in ids). This algorithm
only works for a single fixed effect dimension (i.e., one column in ids).

– 'map' (default for multiple dimensions) - Method of alternating projections applied
to fixed effect absorption by Guimarães and Portugal (2010), Gaure (2013a), Gaure
(2013b), and Correia (2017), among others. Matrix columns are iteratively de-meaned
until convergence. This method works for any number of fixed effect dimensions but will
be slower than 'within' for one dimension. Variations on this method are used by lfe
and reghdfe.

– 'lsmr' - LSMR method of Fong and Saunders (2011). This implementation is taken
from scipy.sparse.linalg.lsmr() and modified for simultaneous iteration over
multiple matrix columns and custom convergence criteria. Matrix columns are iterated
on until convergence. This method works for any number of fixed effect dimensions but
will be slower than 'within' for one dimension. This is the method used by FixedEf-
fectModels.jl.

– 'sw' - Method of Somaini and Wolak (2016). This non-iterative method only works
for two dimensions (i.e., two columns in ids). To minimize memory usage, the first
dimension of fixed effects should have fewer levels than the second dimension (i.e., the
first column in ids should have fewer unique values than the second column). This is
the method used by res2fe.

– 'dummy' - Matrix columns are replaced by residuals from regressions on dummy vari-
ables constructed from ids. This method works for any number of dimensions but is
typically computationally infeasible. It is meant to be a benchmark.

6 Chapter 2. API Documentation

https://numpy.org/doc/stable/reference/generated/numpy.linalg.matrix_rank.html#numpy.linalg.matrix_rank
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.lsmr.html#scipy.sparse.linalg.lsmr

PyHDFE, Release 0.2.0

• options (dict, optional) – Configuration options for the chosen method. The
'within', 'sw', and 'dummy' methods do not support any configuration options. The
following options are supported by both 'map' and 'lsmr':

– iteration_limit : (int, optional) - Maximum number of iterations, after which an excep-
tion will be raised if the algorithm has not converged. By default, the maximum number
of iterations is 1000000.

– tol : (float, optional) - Common convergence criteria based on the differences between
two iterations’ residualized matrices. By default, algorithms will converge when the max-
imum absolute value of these differences is less than 1e-8. Convergence based on this
criteria can be disabled by setting this value to 0.

– converged : (callable or None, optional) - Custom convergence criteria, which should
be a function of the form converged(last_matrix, matrix) -> bool that
accepts the current iteration’s residualized matrix and the last iteration’s residualized
last_matrix. It should return a boolean indicating whether the routine has converged.
When a custom convergence criteria is used, tol is ignored.

The following options are supported only by 'map':

– transform : (str, optional) - Transform operator 𝑇 that determines the order of projec-
tions 𝑃1, 𝑃2, . . . , 𝑃𝑛 for each of the 𝑛 columns of fixed effects in ids. The following
transforms are supported:

* 'kaczmarz' (default) - Kaczmarz or von Neumann-Halpering operator 𝑇 =
𝑃𝑛 · · ·𝑃1, which is asymmetric and hence does not support 'cg' acceleration.

* 'symmetric' - Symmetric Kaczmarz operator 𝑇 = 𝑃𝑛 · · ·𝑃1 · · ·𝑃𝑛.

* 'cimmino' - Symmetric Cimmino operator 𝑇 = (𝑃1 + · · ·+ 𝑃𝑛)/𝑛.

– acceleration : (str, optional) - Method used to accelerate fixed point iteration. The fol-
lowing methods are supported:

* 'none' (default) - Simple non-accelerated fixed point iteration.

* 'gk' - Line search method of Gearhart and Koshy (1989) applied to fixed effect ab-
sorption by Gaure (2013a).

* 'cg' - Conjugate gradient method described by Hernández-Ramos, Escalante, and
Raydan (2011). This method is not supported by the asymmetric 'kaczmarz' trans-
form.

– acceleration_tol : (float, optional) - Acceleration method-specific tolerance for when to
stop accelerating the convergence of a vector and switch to simple iteration.

For 'gk', each vector’s convergence is accelerated only when the sum of squared resid-
uals relative to the sum of squared vector values is greater than this value, which is by
default 1e-16.

For 'cg', each vector’s convergence is accelerated up until the first time that its sum of
squared residuals is greater than this value.

The following options are supported only by 'lsmr':

– residual_tol : (float, optional) - Convergence criteria S2 from Fong and Saunders (2011)
based on Stewart’s backwards error estimate. This is by default 1e-8. Convergence
based on this criteria can be disabled by setting this value to 0.

– condition_limit : (float, optional) - Maximum estimated condition number of the matrix
of fixed effects. For higher estimated condition numbers, an exception will be raised. By
default, the maximum estimated condition number is 100000000.

2.1. pyhdfe.create 7

PyHDFE, Release 0.2.0

Returns Initialized Algorithm for absorbing fixed effects. Class attributes contain information
about the number of observations, the number of fixed effect dimensions, and if computed, the
number of singletons and degrees of freedom used by the fixed effects.

Return type Algorithm

Examples

• Tutorial

Algorithm classes contain information about the fixed effects.

Algorithm Algorithm for absorbing fixed effects.

2.2 pyhdfe.Algorithm

class pyhdfe.Algorithm
Algorithm for absorbing fixed effects. Class attributes contain counts of observations and fixed effect dimen-
sions, and if computed, singletons and degrees of freedom used by the fixed effects.

An algorithm is initialized by create() with one or more dimensions of fixed effects specified by ids. Once
initialized, Algorithm.residualize() absorbs the fixed effects into a matrix and returns the residuals
from a regression of each matrix column on the fixed effects.

observations
Number of observations in the data (i.e., the number of rows in ids).

Type int

dimensions
Number of fixed effect dimensions (i.e., the number of columns in ids).

Type int

singletons
Number of singleton groups or observations. This will be None if there was no need to identify singletons
(i.e., if drop_singletons and compute_degrees were both False in create()).

Type int or None

singleton_indices
Indices of any singleton observations. This will be None if there was no need to identify singletons.

Type array or None

degrees
Exact or approximate number of degrees of freedom used by the fixed effects computed according
to degrees_method in create(). This will be None if compute_degrees was False in
create().

Type int or None

Examples

• Tutorial

8 Chapter 2. API Documentation

PyHDFE, Release 0.2.0

Methods

residualize(matrix[, weights]) Absorb the fixed effects into a matrix and return the
residuals from a regression of each column of the
matrix on the fixed effects.

They can be used to absorb fixed effects (i.e., residualize matrices).

Algorithm.residualize(matrix[, weights]) Absorb the fixed effects into a matrix and return the
residuals from a regression of each column of the matrix
on the fixed effects.

2.3 pyhdfe.Algorithm.residualize

Algorithm.residualize(matrix, weights=None)
Absorb the fixed effects into a matrix and return the residuals from a regression of each column of the matrix on
the fixed effects.

Warning: This function assumes that all of your data have already been cleaned. For example, it will not
drop observations with null values. It will also not do any checks on provided weights (e.g., if they are all
larger than zero).

Parameters

• matrix (array-like) – The two-dimensional array to residualize, which should have a num-
ber of rows equal to Algorithm.observations (i.e., the number of rows in the ids
passed to create()).

• weights (array-like, optional) – Two-dimensional array with weights, which should have
a number of rows equal to Algorithm.observations (i.e., the number of rows in
the ids passed to create()), and one column. Currently supported algorithms are
'within', 'dummy', and non-accelerated 'map'.

Returns Residuals from a (potentially weighted) regression of each column of matrix on the fixed
effects. This matrix has the same number of columns as matrix. If any singleton observations
were dropped when initializing the Algorithm (this is the default behavior of create()),
the residualized matrix will have correspondingly fewer rows.

Return type ndarray

Examples

• Tutorial

2.3. pyhdfe.Algorithm.residualize 9

PyHDFE, Release 0.2.0

10 Chapter 2. API Documentation

CHAPTER

THREE

TUTORIAL

This section uses a series of Jupyter Notebooks to demonstrate how pyhdfe can be used together with regression
routines from other packages. Each notebook employs the Frisch-Waugh-Lovell (FWL) theorem of Frisch and Waugh
(1933) and Lovell (1963) to run a fixed effects regression by residualizing (projecting) the variables of interest.

This tutorial is just meant to demonstrate how pyhdfe can be used in the simplest of applications. For detailed infor-
mation about the different algorithms supported by pyhdfe, refer to API Documentation.

11

https://jupyter.org/

P
yH

D
FE

,R
elease

0.2.0

The online version of the following section may be easier to read.

3.1 scikit-learn

[1]: import pyhdfe
import numpy as np
from sklearn import datasets, linear_model

pyhdfe.__version__

[1]: '0.2.0'

In this tutorial, we’ll use the boston data set from scikit-learn to demonstrate how pyhdfe can be used to absorb fixed effects before running regressions.

First, load the data set and create a matrix of fixed effect IDs. We’ll use a dummy for the Charles river and an index of accessibility to radial highways.

[2]: boston = datasets.load_boston().data
ids = boston[:, [3, 8]]
ids

C:\Programs\Anaconda\envs\pyhdfe\lib\site-packages\sklearn\utils\deprecation.py:87: FutureWarning: Function load_boston
→˓is deprecated; `load_boston` is deprecated in 1.0 and will be removed in 1.2.

The Boston housing prices dataset has an ethical problem. You can refer to
the documentation of this function for further details.

The scikit-learn maintainers therefore strongly discourage the use of this
dataset unless the purpose of the code is to study and educate about
ethical issues in data science and machine learning.

In this special case, you can fetch the dataset from the original
source::

import pandas as pd
import numpy as np

data_url = "http://lib.stat.cmu.edu/datasets/boston"
raw_df = pd.read_csv(data_url, sep="\s+", skiprows=22, header=None)

(continues on next page)

12
C

hapter
3.

Tutorial

https://pyhdfe.readthedocs.io/en/stable/_notebooks/sklearn.html
https://scikit-learn.org/0.15/modules/generated/sklearn.datasets.load_boston.html
https://scikit-learn.org/stable/

P
yH

D
FE

,R
elease

0.2.0

(continued from previous page)

data = np.hstack([raw_df.values[::2, :], raw_df.values[1::2, :2]])
target = raw_df.values[1::2, 2]

Alternative datasets include the California housing dataset (i.e.
:func:`~sklearn.datasets.fetch_california_housing`) and the Ames housing
dataset. You can load the datasets as follows::

from sklearn.datasets import fetch_california_housing
housing = fetch_california_housing()

for the California housing dataset and::

from sklearn.datasets import fetch_openml
housing = fetch_openml(name="house_prices", as_frame=True)

for the Ames housing dataset.
warnings.warn(msg, category=FutureWarning)

[2]: array([[0., 1.],
[0., 2.],
[0., 2.],
...,
[0., 1.],
[0., 1.],
[0., 1.]])

Next, choose our variables: per capita crime rate, proportion of residential land zoned for lots over 25,000 square feet, and proportion of non-retail business acres
per town.

[3]: variables = boston[:, :3]
variables

[3]: array([[6.3200e-03, 1.8000e+01, 2.3100e+00],
[2.7310e-02, 0.0000e+00, 7.0700e+00],
[2.7290e-02, 0.0000e+00, 7.0700e+00],
...,
[6.0760e-02, 0.0000e+00, 1.1930e+01],
[1.0959e-01, 0.0000e+00, 1.1930e+01],
[4.7410e-02, 0.0000e+00, 1.1930e+01]])

The create function initializes an Algorithm for fixed effect absorption that can residualize matrices with Algorithm.residualize. We’ll use the default algorithm.
You may want to try other algorithms if it takes a long time to absorb fixed effects into your data.

3.1.
scikit-learn

13

P
yH

D
FE

,R
elease

0.2.0

[4]: algorithm = pyhdfe.create(ids)
residualized = algorithm.residualize(variables)
residualized

[4]: array([[-1.08723516e-01, -2.20167195e+01, -2.65583593e+00],
[-5.59754167e-02, -2.04166667e+01, -2.56083333e+00],
[-5.59954167e-02, -2.04166667e+01, -2.56083333e+00],
...,
[-5.42835164e-02, -4.00167195e+01, 6.96416407e+00],
[-5.45351644e-03, -4.00167195e+01, 6.96416407e+00],
[-6.76335164e-02, -4.00167195e+01, 6.96416407e+00]])

We can now run a regression of per capita crime rate on the other two variables and our fixed effects.

[5]: y = residualized[:, [0]]
X = residualized[:, 1:]
regression = linear_model.LinearRegression()
regression.fit(X, y)
regression.coef_

[5]: array([[-6.97058632e-05, 5.53038164e-02]])

14
C

hapter
3.

Tutorial

P
yH

D
FE

,R
elease

0.2.0

The online version of the following section may be easier to read.

3.2 statsmodels

[1]: import pyhdfe
import numpy as np
import statsmodels.api as sm
from sklearn import datasets

pyhdfe.__version__

[1]: '0.2.0'

In this tutorial, we’ll use the boston data set from scikit-learn to demonstrate how pyhdfe can be used to absorb fixed effects before running regressions with
statsmodels. We’ll also demonstrate how pyhdfe can be used to compute degrees of freedom used by fixed effects.

First, load the data set and create a matrix of fixed effect IDs. We’ll use a dummy for the Charles river and an index of accessibility to radial highways.

[2]: boston = datasets.load_boston().data
ids = boston[:, [3, 8]]
ids

C:\Programs\Anaconda\envs\pyhdfe\lib\site-packages\sklearn\utils\deprecation.py:87: FutureWarning: Function load_boston
→˓is deprecated; `load_boston` is deprecated in 1.0 and will be removed in 1.2.

The Boston housing prices dataset has an ethical problem. You can refer to
the documentation of this function for further details.

The scikit-learn maintainers therefore strongly discourage the use of this
dataset unless the purpose of the code is to study and educate about
ethical issues in data science and machine learning.

In this special case, you can fetch the dataset from the original
source::

import pandas as pd
import numpy as np

(continues on next page)

3.2.
statsm

odels
15

https://pyhdfe.readthedocs.io/en/stable/_notebooks/statsmodels.html
https://scikit-learn.org/0.15/modules/generated/sklearn.datasets.load_boston.html
https://scikit-learn.org/stable/
https://www.statsmodels.org/stable/regression.html

P
yH

D
FE

,R
elease

0.2.0

(continued from previous page)

data_url = "http://lib.stat.cmu.edu/datasets/boston"
raw_df = pd.read_csv(data_url, sep="\s+", skiprows=22, header=None)
data = np.hstack([raw_df.values[::2, :], raw_df.values[1::2, :2]])
target = raw_df.values[1::2, 2]

Alternative datasets include the California housing dataset (i.e.
:func:`~sklearn.datasets.fetch_california_housing`) and the Ames housing
dataset. You can load the datasets as follows::

from sklearn.datasets import fetch_california_housing
housing = fetch_california_housing()

for the California housing dataset and::

from sklearn.datasets import fetch_openml
housing = fetch_openml(name="house_prices", as_frame=True)

for the Ames housing dataset.
warnings.warn(msg, category=FutureWarning)

[2]: array([[0., 1.],
[0., 2.],
[0., 2.],
...,
[0., 1.],
[0., 1.],
[0., 1.]])

Next, choose our variables: per capita crime rate, proportion of residential land zoned for lots over 25,000 square feet, and proportion of non-retail business acres
per town.

[3]: variables = boston[:, :3]
variables

[3]: array([[6.3200e-03, 1.8000e+01, 2.3100e+00],
[2.7310e-02, 0.0000e+00, 7.0700e+00],
[2.7290e-02, 0.0000e+00, 7.0700e+00],
...,
[6.0760e-02, 0.0000e+00, 1.1930e+01],
[1.0959e-01, 0.0000e+00, 1.1930e+01],
[4.7410e-02, 0.0000e+00, 1.1930e+01]])

16
C

hapter
3.

Tutorial

P
yH

D
FE

,R
elease

0.2.0

The create function initializes an Algorithm for fixed effect absorption that can residualize matrices with Algorithm.residualize. We’ll use the default algorithm.
You may want to try other algorithms if it takes a long time to absorb fixed effects into your data.

[4]: algorithm = pyhdfe.create(ids)
residualized = algorithm.residualize(variables)
residualized

[4]: array([[-1.08723516e-01, -2.20167195e+01, -2.65583593e+00],
[-5.59754167e-02, -2.04166667e+01, -2.56083333e+00],
[-5.59954167e-02, -2.04166667e+01, -2.56083333e+00],
...,
[-5.42835164e-02, -4.00167195e+01, 6.96416407e+00],
[-5.45351644e-03, -4.00167195e+01, 6.96416407e+00],
[-6.76335164e-02, -4.00167195e+01, 6.96416407e+00]])

We can now run a regression of per capita crime rate on the other two variables and our fixed effects.

[5]: y = residualized[:, [0]]
X = residualized[:, 1:]
ols = sm.OLS(y, X)
result = ols.fit()
result.params

[5]: array([-6.97058632e-05, 5.53038164e-02])

Standard errors can be adjusted to account for the degrees of freedom that are lost because of the fixed effects. By default, fixed effect degrees of freedom are
computed when create initializes an algorithm and are stored in Algorithm.degrees.

[6]: se = result.HC0_se
se

[6]: array([0.00109298, 0.00962226])

[7]: se_adjusted = np.sqrt(np.square(se) * result.df_resid / (result.df_resid - algorithm.degrees))
se_adjusted

[7]: array([0.00110398, 0.00971916])

3.2.
statsm

odels
17

PyHDFE, Release 0.2.0

18 Chapter 3. Tutorial

CHAPTER

FOUR

REFERENCES

4.1 Papers

4.1.1 Abowd, Creecy, and Kramarz (2002)

Abowd, John M., Robert H. Creecy, and Francis Kramarz (2002). Computing person and firm effects using linked lon-
gitudinal employer-employee data. Longitudinal Employer-Household Dynamics Technical Papers 2002-06, Center
for Economic Studies, U.S. Census Bureau.

4.1.2 Correia (2015)

Correia, Sergio (2015). Singletons, cluster-robust standard errors and fixed effects: A bad mix. Technical Note, Duke
University.

4.1.3 Correia (2017)

Correia, Sergio (2017). Linear models with high-dimensional fixed effects: An efficient and feasible estimator. Work-
ing Paper.

4.1.4 Fong and Saunders (2011)

Fong, David Chin-Lung, and Michael Saunders (2011). LSMR: An iterative algorithm for sparse least-squares prob-
lems. SIAM Journal on Scientific Computing, 33 (5), 2950–2971.

4.1.5 Frisch and Waugh (1933)

Frisch, Ragnar, and Frederick V. Waugh (1933). Partial time regressions as compared with individual trends. Econo-
metrica, 1 (4), 387-401.

4.1.6 Gaure (2013a)

Gaure, Simen (2013a). OLS with multiple high dimensional category variables. Computational Statistics & Data
Analysis, 66 (0), 8-18.

19

https://ideas.repec.org/p/cen/tpaper/2002-06.html
https://ideas.repec.org/p/cen/tpaper/2002-06.html
http://scorreia.com/research/singletons.pdf
http://scorreia.com/research/hdfe.pdf
https://epubs.siam.org/doi/abs/10.1137/10079687X
https://epubs.siam.org/doi/abs/10.1137/10079687X
https://www.econometricsociety.org/publications/econometrica/1933/10/01/partial-time-regressions-compared-individual-trends
https://ideas.repec.org/a/eee/csdana/v66y2013icp8-18.html

PyHDFE, Release 0.2.0

4.1.7 Gaure (2013b)

Gaure, Simen (2013b). lfe: Linear group fixed effects. The R Journal, 5 (2), 104-117.

4.1.8 Gearhart and Koshy (1989)

Gearhart, William B., and Mathew Koshy (1989). Acceleration schemes for the method of alternating projections.
Journal of Computational and Applied Mathematics, 26 (3), 235-249.

4.1.9 Guimarães and Portugal (2010)

Guimarães, Paulo, and Pedro Portugal (2010). A simple feasible procedure to fit models with high-dimensional fixed
effects. Stata Journal, 10 (4), 628-649.

4.1.10 Hernández-Ramos, Escalante, and Raydan (2011)

Hernández-Ramos, Luis M., René Escalante, and Marcos Raydan (2011). Unconstrained optimization techniques
for the acceleration of alternating projection methods. Numerical Functional Analysis and Optimization, 32 (10),
1041-1066.

4.1.11 Lovell (1963)

Lovell, Michael C. (1963). Seasonal adjustment of economic time series and multiple regression analysis. Journal of
the American Statistical Association, 58 (304), 993-1010.

4.1.12 Somaini and Wolak (2016)

Somaini, Paulo, and Frank A. Wolak (2016). An algorithm to estimate the two-way fixed effects model. Journal of
Econometric Methods, 5 (1), 143-152.

4.2 Software

4.2.1 FixedEffectModels.jl

FixedEffectModels.jl. Julia. Matthieu Gomez. Implements a version of Guimarães and Portugal (2010), Gaure
(2013a), Gaure (2013b), and Correia (2017).

4.2.2 lfe

lfe. R. Simen Gaure. Implements Guimarães and Portugal (2010), Gaure (2013a), and Gaure (2013b).

4.2.3 reghdfe

reghdfe. Stata. Sergio Correia. Implements Correia (2017), which augments Guimarães and Portugal (2010), Gaure
(2013a), and Gaure (2013b).

20 Chapter 4. References

https://journal.r-project.org/archive/2013-2/gaure.pdf
https://doi.org/10.1016/0377-0427(89)90296-3
https://ideas.repec.org/a/tsj/stataj/v10y2010i4p628-649.html
https://ideas.repec.org/a/tsj/stataj/v10y2010i4p628-649.html
https://www.tandfonline.com/doi/abs/10.1080/01630563.2011.591954
https://www.tandfonline.com/doi/abs/10.1080/01630563.2011.591954
https://www.tandfonline.com/doi/abs/10.1080/01621459.1963.10480682
https://ideas.repec.org/a/bpj/jecome/v5y2016i1p143-152n4.html
https://github.com/matthieugomez/FixedEffectModels.jl
https://cran.r-project.org/web/packages/lfe/index.html
https://github.com/sergiocorreia/reghdfe

PyHDFE, Release 0.2.0

4.2.4 res2fe

res2fe. Matlab, SAS, and Stata. Paulo Somaini and Frank Wolak. Implements Somaini and Wolak (2016).

4.2. Software 21

https://ideas.repec.org/a/bpj/jecome/v5y2016i1p143-152n4.html

PyHDFE, Release 0.2.0

22 Chapter 4. References

CHAPTER

FIVE

LEGAL

Copyright 2019 Jeff Gortmaker and Anya Tarascina

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

23

PyHDFE, Release 0.2.0

24 Chapter 5. Legal

Part II

Developer Documentation

25

CHAPTER

SIX

CONTRIBUTING

Please use the GitHub issue tracker to report bugs or to request features. Contributions are welcome. Examples
include:

• Code optimizations.

• Documentation improvements.

• Alternate algorithms that have been implemented in the literature but not in PyHDFE.

27

https://github.com/jeffgortmaker/pyhdfe/issues

PyHDFE, Release 0.2.0

28 Chapter 6. Contributing

CHAPTER

SEVEN

TESTING

Testing is done with the tox automation tool, which runs a pytest-backed test suite in the tests module.

7.1 Testing Requirements

In addition to the installation requirements for the package itself, running tests and building documentation requires
additional packages specified by the tests and docs extras in setup.py, along with any other explicitly specified
deps in tox.ini.

7.2 Running Tests

Defined in tox.ini are environments that test the package under different python versions, check types, enforce
style guidelines, verify the integrity of the documentation, and release the package. The following command can be
run in the top-level pyfwl directory to run all testing environments:

tox

You can choose to run only one environment, such as the one that builds the documentation, with the -e flag:

tox -e docs

7.3 Test Organization

Fixtures, which are defined in tests.conftest, configure the testing environment and load data according to a
range of specifications.

Tests in tests.test_hdfe verify that different algorithms yield the same solutions.

29

https://tox.wiki/en/latest/
https://docs.pytest.org/en/latest/

PyHDFE, Release 0.2.0

30 Chapter 7. Testing

CHAPTER

EIGHT

VERSION NOTES

These notes will only include major changes.

8.1 0.2

• Initial support for weights.

8.2 0.1

• Initial release.

31

PyHDFE, Release 0.2.0

32 Chapter 8. Version Notes

Part III

Indices

33

INDEX

A
Algorithm (class in pyhdfe), 8

C
create() (in module pyhdfe), 5

D
degrees (pyhdfe.Algorithm attribute), 8
dimensions (pyhdfe.Algorithm attribute), 8

O
observations (pyhdfe.Algorithm attribute), 8

R
residualize() (pyhdfe.Algorithm method), 9

S
singleton_indices (pyhdfe.Algorithm attribute), 8
singletons (pyhdfe.Algorithm attribute), 8

35

	I User Documentation
	Introduction
	Installation
	Bugs and Requests

	API Documentation
	pyhdfe.create
	pyhdfe.Algorithm
	pyhdfe.Algorithm.residualize

	Tutorial
	scikit-learn
	statsmodels

	References
	Papers
	Software

	Legal

	II Developer Documentation
	Contributing
	Testing
	Testing Requirements
	Running Tests
	Test Organization

	Version Notes
	0.2
	0.1

	III Indices
	Index

